Combining local face image features for identity verification
نویسندگان
چکیده
With an aim of extracting robust facial features under pose variations, this paper presents two directional projections corresponding to extraction of vertical and horizontal local face image features. The matching scores computed from both horizontal and vertical features are subsequently fused at score level via an extreme learning machine that optimizes the total error rate for performance enhancement. In order to benchmark the performance, both the feature extraction and fusion results are compared with that of popular face recognition methods such as principal components analysis and linear discriminant analysis in terms of equal error rate and CPU time. Our empirical experiments using four data sets show encouraging results under considerable horizontal pose variations. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
On the Use of External Face Features for Identity Verification
In general automatic face classification applications images are captured in natural environments. In these cases, the performance is affected by variations in facial images related to illumination, pose, occlusion or expressions. Most of the existing face classification systems use only the internal features information, composed by eyes, nose and mouth, since they are more difficult to imitat...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملComparison of Spectral-Only and Spectral/Spatial Face Recognition for Personal Identity Verification
Face recognition based on spatial features has been widely used for personal identity verification for security-related applications. Recently, near-infrared spectral reflectance properties of local facial regions have been shown to be sufficient discriminants for accurate face recognition. In this paper, we compare the performance of the spectral method with face recognition using the eigenfac...
متن کاملFusion of color, local spatial and global frequency information for face recognition
This paper presents a novel face recognition method by means of fusing color, local spatial and global frequency information. Specifically, the proposed method fuses the multiple features derived from a hybrid color space, the Gabor image representation, the local binary patterns (LBP), and the discrete cosine transform (DCT) of the input image. The novelty of this paper is threefold. First, a ...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011